Logo do cabeçalho da página Novos Cadernos NAEA

Agricultural production and GHG emissions in the Brazilian Amazon

Marcos Rodrigues, David Costa Correia Silva, Wladimir Colman de Azevedo Junior

Resumo

This study aimed to analyze the impact of agricultural production in the Brazilian Amazon on greenhouse gas (GHG) emissions. This impact was measured using the Johansen cointegration test and the estimation of a vector error correction model (VECM) to explore short and long-run relationships between the equivalent of CO2 emissions, agricultural production, cattle heads, deforestation, and agricultural value added to GDP. The results indicated no evidence of long-run equilibrium in equivalent CO2 emissions for agriculture in the Amazon. However, in the short run, agricultural production, deforestation, and agricultural value added to GDP impacted GHG emissions. Extensive production expanded the Amazon’s agricultural frontier and increased GHG emissions, while investments in sustainable practices in rural areas and compliance with environmental institutions contributed to reducing the impact of agriculture on GHG emissions.


Palavras-chave

vector error correction model; cointegration; commodities; sustainable agriculture.


Texto completo:

PDF (English)

Referências


ALMEIDA, C. A. et al. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amazonica, Boa Vista, Vol. 46, n. 3, p. 291-302, Sept. 2016.

ARAGÃO, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, [s. l.], Vol. 9, n. 1, p. 536, 2018.

ARAÚJO, M. L. S. et al. Spatiotemporal dynamics of soybean crop in the Matopiba region, Brazil (1990–2015). Land Use Policy, [s. l.], Vol. 80, p. 57-67, 2019.

ASSUNÇÃO, J. et al. The Effect of Rural Credit on Deforestation: Evidence from the Brazilian Amazon. The Economic Journal, [s. l.], Vol. 130, n. 626, p. 290-330, Feb. 2020.

BALAFOUTIS, A. et al. Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability , [s. l.], Vol. 9, n. 8, p. 1339, Aug. 2017.

BEN AÏSSA, M. S.; BEN JEBLI, M.; BEN YOUSSEF, S. Output, renewable energy consumption and trade in Africa. Energy Policy, [s. l.], Vol. 66, p. 11-18, 2014.

BÖRNER, J. et al. Forest law enforcement in the Brazilian Amazon: Costs and income effects. Global Environmental Change, [s. l.], Vol. 29, p. 294-305, 2014.

BRASIL. Operação Amazônia. Brasília, DF: Ministério Extraordinário para a Coordenação dos Organismos Regionais - MERCOR, 1966.

BRASIL. Emissões por Unidade Federativa. Ministério da Ciência e da Tecnologia, Brasília, DF, 2022. Disponível em: https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/sirene/emissoes/emissoes-por-unidade-federativa. Acesso em: 18 abr. 2022.

BULTE, E. H.; DAMANIA, R.; LÓPEZ, R. On the gains of committing to inefficiency: Corruption, deforestation and low land productivity in Latin America. Journal of Environmental Economics and Management, [s. l.], Vol. 54, n. 3, p. 277-295, 2007.

BUSTAMANTE, M. M. C. et al. Estimating greenhouse gas emissions from cattle raising in Brazil. Climatic Change, [s. l.], Vol. 115, n. 3/4, p. 559-577, 2012.

CARRASCO, L. R. et al. Global economic trade-offs between wild nature and tropical agriculture. PLOS Biology, [s. l.], Vol. 15, n. 7, p. e2001657, July 2017.

CERRI, C. C. et al. Brazilian greenhouse gas emissions: the importance of agriculture and livestock. Scientia Agricola, [s. l.], Vol. 66, n. 6, p. 831-843, Dec. 2009.

COSTA, F. A. Mercado de terras e trajetórias tecnológicas na Amazônia. Economia e Sociedade, São Paulo, Vol. 21, n. 2, p. 245-273, 2012.

DAR, J. A.; ASIF, M. Do agriculture-based economies mitigate CO2 emissions? : Empirical evidence from five SAARC countries. International Journal of Energy Sector Management, [s. l.], Vol. 14, n. 3, p. 638-652, 2020.

ENDERS, W. Applied econometric time series. 4. ed. New York: Wiley, 2014.

EPA. Global Anthropogenic Non-CO2 Greenhouse Gas Emissions : 1990 - 2030. Washington D.C.: [s. n.], 2012.

FAO; UN. System of Environmental-Economic Accounting for Agriculture, Forestry and Fisheries (SEEA AFF): FAO and United Nations Statistical Division: Rome, 2020.

FEARNSIDE, P. M. Soybean cultivation as a threat to the environment in Brazil. Environmental Conservation, [s. l.], Vol. 28, n. 1, p. 23-38, 2001.

FEARNSIDE, P. M. Desmatamento na Amazônia Brasileira: História, índices e conseqüências. Megadiversidade, Belo Horizonte, Vol. 1, n. 4, p. 113-123, 2005.

FLACHENECKER, F.; GUIDETTI, E.; PIONNIER, P-A. Towards global SEEA Air Emission Accounts: description and evaluation of the OECD methodology to estimate SEEA Air Emission Accounts for CO2, CH4 and N2O in Annex-I countries to the UNFCCC. OECD Statistics Work Paper, [s. l.], n. 11, p. 35, 2018.

FREY, G. P. et al. Simulated Impacts of Soy and Infrastructure Expansion in the Brazilian Amazon: A Maximum Entropy Approach. Forests, [s. l.], Vol. 9, n. 10, 2018. https://doi.org/10.3390/f9100600

GRANGER, C. W. J. Time Series Analysis, Cointegration, and Applications. The American Economic Review, [s. l.], Vol. 94, n. 3, p. 421-425, 2004.

IBGE. Sistema IBGE de Recuperacao automatica–SIDRA. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, 2021. Disponível em: http://www.sidra.ibge.gov.br/. Acesso em: 2 dez. 2021.

INPE. Prodes: Monitoramento da floresta Amazônica por satélite. Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2022. Disponível em: http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes. Acesso em: 18 abr. 2022

IPEADATA. PIB Estadual - agropecuária - valor adicionado - preços básicos. Instituto de Pesquisa Econômica Aplicada, Rio de Janeiro, 2022. Disponível em: http://www.ipeadata.gov.br/. Acesso em: 18 abr. 2022.

JEPSON, W. Private agricultural colonization on a Brazilian frontier, 1970-1980. Journal of Historical Geography, [s. l.], Vol. 32, p. 839-863, 2006.

JOHANSEN, S. Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, [s. l.], Vol. 12, n. 2, p. 231-254, 1988.

KHAN, M. T. I.; ALI, Q.; ASHFAQ, M. The nexus between greenhouse gas emission, electricity production, renewable energy and agriculture in Pakistan. Renewable Energy, [s. l.], v. 118, p. 437-451, 2018.

MOFFETTE, F.; SKIDMORE, M.; GIBBS, H. K. Environmental policies that shape productivity: Evidence from cattle ranching in the Amazon. Journal of Environmental Economics and Management, [s. l.], Vol. 109, p. 102490, 2021.

MUELLER, C. C. Os economistas e as relações entre o sistema econômico e o meio ambiente. Brasília, DF: UNB, 2007.

MÜLLER-HANSEN, F. et al. Can Intensification of Cattle Ranching Reduce Deforestation in the Amazon? Insights From an Agent-based Social-Ecological Model. Ecological Economics, [s. l.], Vol. 159, p. 198-211, 2019.

NEPSTAD, D. C. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science, [s. l.], Vol. 344, n. 6188, p. 1118-1123, June 2014.

NEPSTAD, D. C.; STICKLER, C. M.; ALMEIDA, O. T. Globalization of the Amazon soy and beef industries: Opportunities for conservation. Conservation Biology, [s. l.], Vol. 20, n. 6, p. 1595-1603, 2006.

PATIÑO-DOMÍNGUEZ, D. R.; OLIVEIRA, N. S. M. N.; MOURAO, P. R. Cointegrated land use and CO2 emissions—the silent Columbian cattle revolution. Environmental Science and Pollution Research, [s. l.], Vol. 28, n. 9, p. 11030-11039, Mar. 2021.

PENG, Z.; WU, Q. Evaluation of the relationship between energy consumption, economic growth, and CO2 emissions in China’ transport sector: the FMOLS and VECM approaches. Environment, Development and Sustainability, [s. l.], Vol. 22, n. 7, p. 6537-6561, 2020.

R CORE TEAM. R: A Language and Environment for Statistical Computing. Vienna: [s. n.], 2023.

RIVERO, S. et al. Pecuária e desmatamento: Uma análise das principais causas diretas do desmatamento na Amazônia. Nova Economia, Belo Horizonte, Vol. 19, n. 1, p. 41-66, 2009.

SILVEIRA, C. S.; OLIVEIRA, L. Análise do mercado de carbono no Brasil: histórico e desenvolvimento. Novos Cadernos NAEA, Belém, Vol. 24, n. 3, p. 11-31, 23 Dec. 2021.

SMITH, P. et al. Agriculture, Forestry and Other Land Use (AFOLU). In: EDENHOFER, O. et al. (Ed.). Climate Change 2014 Mitigation of Climate Change. Cambridge: Cambridge University Press, 2014. p. 811-922.

SOTERRONI, A. C. et al. Expanding the Soy Moratorium to Brazil’s Cerrado. Science Advances, [s. l.], Vol. 5, n. 7, p. 1-9, May 2022.

SOUZA, G. S.; GOMES, E. G. Improving agricultural economic efficiency in Brazil. International Transactions in Operational Research, [s. l.], Vol. 22, n. 2, p. 329-337, Mar. 2015.

YUSUF, M. S. et al. Role of trade liberalization, industrialisation and energy use on carbon dioxide emissions in Australia: 1990 to 2018. Environmental Science and Pollution Research, [s. l.], Vol. 30, n. 32, p. 79481-79496, 2023.

ZAFEIRIOU, E.; AZAM, M. CO2 emissions and economic performance in EU agriculture: Some evidence from Mediterranean countries. Ecological Indicators, [s. l.], Vol. 81, p. 104-114, 2017.




DOI: http://dx.doi.org/10.18542/ncn.v26i3.13083

Indexadores 

            

          

 

 

Flag Counter

Print ISSN: 1516-6481 – Eletrônica ISSN: 2179-7536