Cabeçalho da página

METHODOLOGICAL APPROACH TO DETERMINE THE CAPACITY FOR ENVIRONMENTAL RESILIENCE IN WATERSHEDS

Livania Norberta Oliveira, Lucio Sobral Cunha, Eugênia Pereira, Maria Lucia Brito Cruz

Resumo

The determination of resilience capacity constitutes an important tool for environmental conservation and preservation. The aim of the present study was to evaluate the environmental resilience capacity of the lower course of the basin of the Poti River (LCPR) in the state of Piauí in northeastern Brazil. For such, analyses were performed of the natural and socioeconomic aspects of the area. A geographic information system was used for interpreting the lower Poti River and identifying the main existing environmental risks. The images were edited using SPRING 5.2 and ARCMAP 10.3. Environmental resilience capacity was determined by calculating an environmental resilience index (ERI) based on two additional indexes: the natural resilience index (NRI) and the municipal social vulnerability index (MSVI). Environmental resilience capacity was low in the urban areas of the river due to the greater pressure on the environment as a result of demographic density and the exploitation of natural resources. In contrast, rural areas (86 percent of LCRP) showed a moderate-to-high degree of environmental resilience, due to the occurrence of large areas predominantly covered with natural vegetation. The municipal social vulnerability index reflects the various public strategies adopted by administrators. Another finding was that the method developed for evaluating environmental resilience based on the analysis of natural resilience and social vulnerability is important to the planning and management of river basins in terms of the sustainable development of its uses in different geographic areas.

 

KEYWORDS: Vulnerability; Resilience; Hydrographic basin; Sustainability


Texto completo:

PDF

Referências


Adger, W.N., Hughes, T.P., Folke, C., Carpenter, S.R., Rockström, J., 2005. Social-ecological

resilience to coastal disasters. Science. 309(1), pp.1036–1039.

Burkhard, B., Fath, B.D., Müller, M., 2011. Adapting the adaptive cycle: hypotheses on

the development of ecosystem properties and services. Ecol. Model. 222, pp.2878–2890.

Chapin, F.S., Peterson, G., Berkes, F., Callaghan, T.V., Angelstam, P., Apps, M., Beier, C.,

Bergeron, Y., Crépin, A.S., Danell, Elmqvist, T., Folke, C., Forbes, B., Fresco, N., Juday, G.,

Niemelä, J., Shvidenko, A., Whiteman, G., 2004. Resilience and vulnerability of northern

regions to social and environmental change. AMBIO. 33, pp.344–349.

Costa, S.S.L; Moraes , M.V.A.R.; Portela , J.P., 2015. Geoenvironmental

compartmentalization of the municipality of Demerval Lobão, Piauí. REGNE. 1, pp.21-37.

Cumming, G.S., 2011. Spatial Resilience in Social–Ecological Systems. Springer, Berlin,

Heidelberg/New York.

Cunha, L., Mendes, J.M., Tavares, A., Freiria, S., 2011. Construção de modelos de avaliação

de vulnerabilidade social a riscos naturais e tecnológicos. O desafio das escalas. In: Santos,

N., Cunha, L. (Eds.), Trunfos de uma Geografia Activa: Desenvolvimento Local, Ambiente,

Ordenamento e Tecnologia. IUC, Coimbra, pp. 627-637. http://dx.doi.org/10.14195/978-989-

-0244-8_71

Cutter, S.L., 2003. The Vulnerability of Science and the Science of Vulnerability. Annals of

the Association of American Geographers. 93, pp.1-12.

Cutter, S.L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., Webb, J., 2008. A placebased model for understanding community resilience to natural disasters. Global

Environmental Change.18, pp.598–606.

Cutter, S. L., 2011. A ciência da vulnerabilidade: modelos, métodos e indicadores. Revista

Crítica de Ciências Sociais. 93, pp.59-69.

Delamare, T.O.; Sato, S.E.; Simon, A.L.H., 2017. Análise da cobertura e uso da terra da

colônia de pescadores Z3 – Pelotas (RS): elementos para o zoneamento geoambiental. In:

Pereza-Filho, A., Amorim, R.R. (Eds.), Os desafios da geografia física na fronteira do

conhecimento. Campinas, UNICAMP, pp. 2733-2744.

Evans, J.P., 2011. Resilience, ecology and adaptation in the experimental city. Transactions

of the Institute of British Geographers. 36, pp.223–237.

Fiksel, J. 2003. Designing resilient, sustainable, systems. Environmental Science and

Technology, 37, pp.5330–5339.

Fiksel, J. 2006. Sustainability and resilience: toward a systems approach. Sustainability:

Science Practice and Policy, 2(2), pp.14–21.

Francis J.L., Li, L., Janzen, H.H., Angers, D.A., Olson, B.M., 2016. Soil quality attributes,

soil resilience, and legacy effects following topsoil removal and one-time amendments.

Canadian Journal of Soil Science, 96, pp.177-190.

Francis, R., Bekera, B.2014. A metric and frameworks for resilience analysis of engineered

and infrastructure systems. Reliability Engineering and System Safety. 121, pp.90-103.

Folke, C., 2006. Resilience: the emergence of a perspective for social-ecological systems

analyses. Global Environmental Change. 16(3), pp.253–267.

IBGE. Instituto Brasileiro de Geografia e Estatística. Available in:

http://www.ibge.gov.br/home/estatistica/populacao/censo2010/, Censo demográfico de 2010.

[Accessed 12, July, 2015]

IBGE. Instituto Brasileiro de Geografia e Estatística. Available in:

https://biblioteca.ibge.gov.br/visualizacao/periodicos/66/pam_2016_v43_br.pdf , Produção

Agrícola Municipal 2016. [Accessed July 2017]

Klein, R.J.T., Nicholls, R.J., Thomalla, F., 2003. Resilience to natural hazards: how useful is

this concept? Environmental Hazards, 5, 35–45.

Holling, C.S., 1973. Resilience and stability of ecological systems. Annual Review of Ecology

and Systematics, 4, pp.1–23.

Laliberté, E., Legendre, P., 2010. A distance‐based framework for measuring functional

diversity from multiple traits. Ecology, 91, pp.299-305.

Lima, I.M.M.F.; Augustin, C.H.R.R., 2014. Bacia Hidrográfica do Rio Poti: dinâmica e

morfologia do canal principal no trecho do baixo curso. X Simpósio Nacional de

Geomorfologia. Manaus, Amazônia.

Melo, E.T; Sales, M.C.L.; Oliveira, J.G.B., 2011. Aplicação do índice de vegetação por

diferença normalizada (NDVI) para análise da degradação ambiental da microbacia

hidrográfica do riacho dos cavalos, Crateús-CE. RAEGA - o espaço geográfico em análise,

, PP.520-533.

Mendes, J.; Tavares, A.O.; Cunha, L.; Freiria, S., 2011. A vulnerabilidade social aos perigos

naturais e tecnológicos em Portugal. Revista Crítica de Ciências Sociais, 93, PP.95-128.

Mu, D., Seager, T.P, Rao, P.S.C., Park, J., Zhao, F., 2011. A resilience perspective on biofuel

production. Integrated Environmental Assessment and Management, 7, pp.348–359.

Müller, F., Burkhard, B., Kroll, F., 2010 a. Resilience, integrity and ecosystem dynamics:

bridging ecosystem theory and management. In: Otto, J.C., Dikau, R. (Eds.), Landform–

Structure, Evolution, Process Control. Lecture Notes in Earth Sciences Series, Springer, 115,

pp.221–242.

Müller, J. Noss, F.S., Bussler, H., Brandl, R., 2010 b. Learning from a “benign neglect

strategy” in a national park: response of saproxylic beetles to dead wood accumulation. Biol.

Conserv. 143, pp.2559–2569.

Müller, F., Bergmann, M., Dannowski, D., Dippner, J.W., Gnauck, A., Haase, P. Jochimsen,

M.C., Kasprzak, P., Kröncke, I., Kümmerlin, R., Küster, M., Meesenburg, H., Merz, C.,

Millat, G., Müller, J., Padisák, J., Schimming, C.G., Theuerkauf, M., 2016. Assessing

resilience in long-termecological data sets. Ecological Indicators. 65, pp.10–43.

Oliveira, L. N., & Aquino, C. M. S. de. (2020). Definições e aplicações da resiliência na

ciência geográfica. Revista Do Departamento De Geografia, 39, 1-13.

https://doi.org/10.11606/rdg.v39i0.159581

Ponce-Campos, G.E., Moran, M.S., Huete, A., Zhang, Y., Bresloff, C., Huxman, T.E;

Eamus, D., Bosch, D.D., Buda, A.R., Gunter, S.A., Scalley, T.H., Kitchen, S.G., McClaran,

M.P., McNab, W,H., Montoya, D.S., Morgan, J.A., Peters, D.P., Sadler, E.J., Seyfried,

M.S., Starks, P.J., 2013. Ecosystem resilience despite large-scale altered hydroclimatic

conditions. Nature. 494, PP.349-352.

Ramos, A., Cunha, L., Cunha, P.P., 2014. Application de la Méthode de l’Analyse

Multicritère Hiérarchique à l’étude des glissements de terrain dans la région littorale du centre

du Portugal: Figueira da Foz – Nazaré. Geo-Eco-Trop. 38, pp.33-44.

Santos, F.A.; Aquino, C.M.S., 2015. Estimativa da erodibilidade dos solos em área suscetível

à desertificação, no estado do Piauí: o caso dos municípios de Castelo do Piauí e Juazeiro do

Piauí. Revista GeoPantanal. 10, pp.101-111.

Tricart, J., 1977. Ecodinâmica. IBGE-SUPREN, Recursos Naturais e Meio Ambiente. Rio de

Janeiro. 97.

Vital, M.H.F., 2007. Impacto Ambiental de Florestas de Eucalipto. Revista do BNDES. 14,

pp.235-276.

Vogel, A., Scherer-Lorenzen, M., Weigelt, A., 2012. Grassland Resistance and Resilience

after Drought Depends on Management Intensity and Species Richness. PLoS ONE 7, (5)

e36992.




DOI: http://dx.doi.org/10.18542/geo.v10i19.13399

Apontamentos

  • Não há apontamentos.


GeoAmazônia. Todos os Direitos Reservados.
Print ISSN: 1980-7759 (impresso)
eISSN: 2358-1778

DOI da Revista GeoAmazônia: https://dx.doi.org/10.18542 

Indexadores: DOAJ - Latindex - Periódicos da CAPES - Crossref -  BASE - DRJI -Open Science Directory/EBSCO - Google Acadêmico - Wordcat - Index Corpenicus - Suncat - SUDOC - COPAC - Scilit - ERIH PLUS - REDIB (antigo E-Revista) - EZB - Sumários - LivreEuropub - ZDB - GIGA - CIRC - Openaire - OAJI - Jifactor - Diadorim - MIAR - Citefactor - Journal Factor - Infobase - Biblioteke Virtual - Sindexs - Researchbib - PBN - SHERPA/ROMEO - ZB MED - La Referencia - REBIUN - World WideSciente. Org