MONITORAMENTO E REMOÇÃO DE METAIS NA DIGESTÃO ANAERÓBIA TERMOFÍLICA EXTREMA DE VINHAÇA DE CANA-DE-AÇÚCAR
Resumo
A determinação dos teores de elementos-traço e sua remoção é uma informação relevante para a compreensão dos processos metanogênicos envolvendo a digestão anaeróbia de diversos tipos de águas residuárias. Entretanto, ainda existem lacunas na avaliação de elementos-traço na digestão anaeróbia da vinhaça de cana-de-açúcar, devido à complexidade deste tipo de água residuária. Diante desse contexto, a concentração total dos elementos B, Co, Cu, Fe, Mn, Ni, Se, V e Zn e suas eficiências de remoção foram monitoradas em um reator de leito fixo estruturado (ASTBR) alimentado com vinhaça de cana-de-açúcar sob condição de termofilia extrema. As concentrações máximas detectadas nas amostras de vinhaça de cana-de-açúcar foram 0,2; 0,05; 0,9; 12,7; 4,3; 0,15; 0,08; 0,05 e 1,1 mg L-1 para B, Co, Cu, Fe, Mn, Ni, Se, V e Zn, respectivamente. As eficiências médias de remoção dos metais, em ordem decrescente, foram: Mn (80 ± 25%), Zn (78 ± 23%), Cu (77 ± 22%), Ni (68 ± 32%), Fe (63 ± 19%), V (60 ± 24%), B (60 ± 30%), Se (56 ± 22%) e Co (52 ± 22%). As eficiências de remoção dos elementos-traço que atingiram no mínimo 50%, indicam a capacidade do reator na remoção de micronutrientes e macronutrientes. A análise da concentração dos elementos-traço apresentadas neste estudo é importante e pode servir de base para estudos de impacto e monitoramento ambiental envolvendo a rota destes elementos-traço nas demais matrizes ambientais (por exemplo, solos, águas superficiais e subterrâneas) evitando impactos ambientais adversos.
Palavras-chave
Processos anaeróbios; Remoção de metais; Subprodutos da cana-de-açúcar
Texto completo:
PDFReferências
AMERICAN PUBLIC HEALTH ASSOCIATION (APHA); AMERICAN WATER WORKS ASSOCIATION (AWWA); WATER POLLUTION CONTROL FEDERATION (WPCF). Standard Methods for the Examination of Water and Wastewater. 21. ed. Washington, D.C.: APHA/AWWA/WPCF, 2005.
AQUINO, S. F.; BRANDT, E. M. F.; CHERNICHARO, C. A. L. Remoção de fármacos e desreguladores endócrinos em estações de tratamento de esgoto: revisão da literatura. Engenharia Sanitária Ambiental, v. 18, n. 3, p. 187-204, 2013.
BANKS, C. J.; ZHANG, Y.; JIANG, Y.; HEAVEN, S. Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresource Technololgy, v. 104, 127-135, 2012.
BEKMEZCI, O. K.; UCAR, D.; KAKSONEN, A. H.; SAHINKAYA, E. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor. Journal of Hazardous Materials, v. 189, n. 3, p. 670–676, 2011.
BRASIL. MINISTÉRIO DO INTERIOR. Portaria nº 323, de 29 de novembro de 1978. [Proíbe o lançamento de vinhoto em coleções de água]. (Publicada no D.O.U do dia 29/11/1978, seção 1, p. 19456).
BUSETTI, F.; BADOER, S.; CUOMO, M.; RUBINO, B.; TRAVERSO, P. Occurrence and Removal of Potentially Toxic Metals and Heavy Metals in the Wastewater Treatment Plant of Fusina (Venice, Italy). Industrial & Engineering Chemistry Research, v. 44, p. 9264-9272, 2005.
CAMILOTI, P. R.; MOCKAITIS, G.; RODRIGUES, J. A. D.; DAMIANOVIC, M. H. R. Z.; FORESTI, E.; ZAIAT, M. Innovative anaerobic bioreactor with fixed-structured bed (ABFSB) for simultaneous sulfate reduction and organic matter removal. Journal of Chemical Technology and Biotechnology, v. 89, n. 7, p. 1044–1050, 2013.
CANÇADO, P. H. D.; FERREIRA, T.; PIRANDA, E. M.; SOARES, C. O. Sugarcane stems as larval habitat for the stable fly (Stomoxys calcitrans) in sugarcane plantations. Pesquisa Veterinária Brasileira, v. 33, n. 6, p. 741–744, 2013.
CETESB. COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO. Decisão de Diretoria Nº 045/2015/C: Norma Técnica P4.231: Vinhaça – Critérios e procedimentos para aplicação no solo agrícola. 3.ed, 2. versão, 15 p., 2015.
CHEN, Y.; CHENG, J. J.; CREAMER, K. S. Inhibition of anaerobic digestion process: A review. Bioresource Technology, v. 99, p. 4044–4064, 2008.
CHOONG, Y. Y.; NORLI, I.; ABDULLAH, A. Z.; YHAYA, M. F. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresource Technology, v. 209, p. 369–379, 2016.
COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento da safra brasileira: cana-de-açúcar, Brasília, DF, v. 7, n. 4, p. 1-62, mai. 2021. Safra 2020/21. Quarto levantamento. Disponível em: https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar/item/download/37136_b3e7df44d7d5e801238498af6b39d254. Acesso em 28 nov. 2021.
CURRIE, L. A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Pure and Applied Chemistry, v. 67, n. 10, p. 1699–1723, 1995.
DEMIREL, B.; SCHERER, P. Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy, v. 35, n. 3, p. 992–998, 2011.
DIMPE, K. M.; NGILA, J. C.; MABUBA, N.; NOMGONGO, P. N. Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge. Physics and Chemistry of the Earth, Parts A/B/C, v. 76–78, p. 42–48, 2014.
DRIESSEN, W. J. B. M.; TIELBAARD, M. H.; VEREIJKEN, T. L. F. M. Experience on anaerobic treatment of distillery effluent with the UASB process. Water Science Technology, v. 30, n. 12, p. 193–201, 1994.
EL-ASSAD, A. B.; VAN-DAL, E. S.; LOPES, M. S. G.; de ANDRADE COUTINHO, P. L.; do CARMO, R. W.; JACONIS, S.B. Technologies, Products and Economic Viability of a Sugarcane Biorefinery in Brazil, In: CAVANI, F.; ALBONETTI, S.; BASILE, F.; GANDINI, A. (Eds.) Chemical and Fuels from Bio-Based Building Blocks. Weinheim: Wiley-VCH Verlag, 2016, p. 569-602.
EVRANOS, B.; DEMIREL, B. The impact of Ni, Co and Mo supplementation on methane yield from anaerobic mono-digestion of maize silage. Environmental Technology, v. 36, n. 12, p. 1556–1562, 2015.
FACCHIN, V.; CAVINATO C.; FATONE, F.; PAVAN, P.; CECCHI, F.; BOLZONELLA, D. Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: The influence of inoculum origin. Biochemical Engineering Journal, v. 70, p. 71–77, 2013.
FAVA, M.; RIBAS, F. The benefits of sugarcane chain development in Africa. Management Review, v. 15, n. 1, p. 159–166, 2012.
FERMOSO, F. G.; BARTACEK, J.; CHING CHUNG, L.; LENS, P. N. Supplementation of cobalt to UASB reactors by pulse dosing: CoCl2 versus CoEDTA2− pulses. Biochemical Engineering Journal, v. 42, n. 2, p. 111–119, 2008a.
FERMOSO, F. G.; COLLINS, G.; BARTACEK, J.; OFLAHERTY, V.; LENS, P. N. Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors. Biodegradation, v. 19, p. 725–737, 2008b.
FERMOSO, F. G.; BARTACEK, J.; JANSEN, S.; LENS, P. N. Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application. Science of Total Environment, v. 407, n. 12, p. 3652–3667, 2009.
FRANKLIN, R. J. Full-scale experiences with anaerobic treatment of industrial wastewater. Water Science and Technology, v. 44, n. 8, p. 1–6, 2001.
FUESS, L. T.; GARCIA, M. L. Implications of stillage land disposal: a critical review on the impacts of fertigation. Journal of Environmental Management, v. 145, p. 210–229, 2014.
FUESS, L. T.; GARCIA, M. L. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production. Journal of Environmental Management, v. 162, p. 102–114, 2015.
FUESS, L. T.; KIYUNA, L. S. M.; FERRAZ JÚNIOR, A. D. N.; PERSINOTI, G. F.; SQUINA, F. M.; GARCIA, M. L.; ZAIAT, M. Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Applied Energy, v. 189, p. 480–491, 2017.
GIACHINI, C. F.; FERRAZ, M. V. Benefícios da utilização de vinhaça em terras de plantio de cana-de-açúcar - revisão de literatura. Revista Científica Eletrônica de Agronomia, v. 3, p. 1-15, 2009.
GLASS, J. B.; ORPHAN, V. Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide. Frontiers in Microbiology, v. 3, n. 61, p. 1–20, 2012.
GUSTAVSSON, J.; SVENSSON, B. H.; KARLSSON, A. The feasibility of trace element supplementation for stable operation of wheat stillage-fed biogas tank reactors. Water Science and Technology, v. 64, n. 2, p. 320–325, 2011.
GUSTAVSSON, J.; YEKTA, S. S.; SUNDBERG, C.; KARLSSON, A.; EJLERTSSON, J.; SKYLLBERG, U.; SVENSSON, B. H. Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation. Applied Energy, v. 112, n. SI, p. 473–477, 2013.
HARRIS, D. C. Quantitative Chemical Analysis. 7 ed. New York: W.H. Freeman and Company, 2007.
HOBAN, D. J.; VAN DEN BERG, L. Effect of iron on conversion of acetic acid to methane during methanogenic fermentations. Journal of Applied Bacteriology, v. 47, p. 153–159, 1979.
HOLM-NIELSEN, J. P.; SEADI, T.; OLESKOWICZ-POPIEL, P. The future of anaerobic digestion and biogas utilization. Bioresource Technology, v. 100, n. 22, p. 5478–84, 2009.
JANKE, L.; LEITE, A. F.; BATISTA, K.; SILVA, W.; NIKOLAUSZ, M.; NELLES, M.; STINNER, W. Enhancing biogas production from vinasse in sugarcane biorefineries: Effects of urea and trace elements supplementation on process performance and stability. Bioresource Technology, v. 217, p. 10–20, 2016.
KAPLAN, D.; ABELIOVICH, A.; BEN-YAAKOW, S. The fate of heavy metal in wastewater stabilization ponds. Water Research, v. 21, p. 1189–1194, 1987.
KAYHANIAN, M.; RICH, D. Pilot-scale high solids thermophilic anaerobic digestion of municipal solid waste with an emphasis on nutrient requirements. Biomass and Bioenergy, v. 8, n. 6, p. 433–444, 1995.
KRÖPFELOVÁ, L.; VYMAZAL, J.; SVEHLA, J.; STÍCHOVÁ, J. Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic. Environmental Pollution, v. 157, p. 1186–1194, 2009.
KRUG, F. J; ROCHA, F. R. P. Métodos de preparo de amostras para análise elementar. 1. ed. São Paulo: EditSBQ, 2016.
LEBUHN, M.; LIU, F.; HEUWINKEL, H.; GRONAUER, A. Biogas production from mono-digestion of maize silage-long term process stability and requirements. Water Science & Technology, v. 58, p. 1645–1651, 2008.
LIN, D.; KAKIZONO, T.; NISHIO, N.; NAGAI, S. Enhanced cytochrome formation and stimulate methanogenesis rate by the increased ferrous concentrations in Methanosarcina barkeri culture. FEMS Microbiology Letters, v. 68, p. 89–92, 2006.
LOPES, M. L.; PAULILLO, S. C. L.; GODOY, A.; CHERUBIN, R. A.; LORENZI, M. S.; GIOMETTI, F. H. C.; BERNARDINO, C. D.; AMORIM NETO, H. B.; AMORIM, H. V. Ethanol production in Brazil: a bridge between science and industry. Brazilian Journal of Microbiology, v. 47, n. 1, p. 64–76, 2016.
LORA, E. S.; ANDRADE, R. V. Biomass as energy source in Brazil. Renewable & Sustainable Energy Reviews, v. 13, p. 777–788, 2009.
MINISTÉRIO DA AGRICULTURA (MAPA). Produção total de etanol deve ficar em 31,6 bilhões de litros em 2019. Disponível em:
http://www.agricultura.gov.br/noticias/producao-total-de-etanol-deve-ficar-em-31-6-bilhoes-de-litros-em-2019. Acesso em: 26 nov. 2018.
MOCKAITIS, G.; PANTOJA, J. L. R.; RODRIGUES, J. A. D.; FORESTI, E.; ZAIAT, M. Continuous anaerobic bioreactor with a fixed-structure bed (ABFSB) for wastewater treatment with low solids and low applied organic loading content. Bioprocess and Biosystems Engineering, v. 37, n. 7, p. 1361–1368, 2014.
MONSHUPANEE, T.; NIMDACH, P.; INCHAROENSAKDI, A. Two-stage (photoautotrophy and heterotrophy) cultivation enables efficient production of bioplastic poly-3-hydroxybutyrate in auto-sedimenting cyanobacterium. Scientific Reports, v. 6, n. November, p. 1–9, 2016.
MOUCHET, P. From conventional to biological removal of iron and manganese in France. Journal of the American Water Works Association, v. 84, n. 4, p. 158- 167, 1992.
NAIRN, B., HEDIN, R. S. Contaminant removal capabilities of wetlands constructed to treat coal mine drainage. In: MOSHIRI, G. A. (Ed.). Constructed wetlands for water quality improvement. Boca Raton, Florida: Lewis Publishers, 1993, p. 187–195.
NIZ, M. Y. K. Produção biológica de hidrogênio e metano a partir de vinhaça de cana-de-açúcar em termofilia extrema. 2019. Tese (Doutorado em Ciências, Programa de Engenharia Hidráulica e Saneamento) - Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2019.
NIZ, M.Y.K.; ETCHELET, I.; FUENTES, L.; ETCHEBEHERE, C.; ZAIAT, M. Extreme thermophilic condition: An alternative for long-term biohydrogen production from sugarcane vinasse. International Journal of Hydrogen Energy, v. 44, p. 22876-22886, 2019. https://doi.org/10.1016/j.ijhydene.2019.07.015
OECHSNER, H. -W.; LEMMER, A.; RAMHOLD, D.; MATHIES, E.; MAYRHUBER, E.; PREISSLER, D. Method for Producing Biogas in Controlled Concentrations of Trace Elements. Titular: ISF GmbH. US20100304457A1. Depósito: 29 mai. 2008. Concessão: 02 dez. 2010.
OLESZKIEWICZ, J. A.; SHARMA, V. K. Stimulation and inhibition of anaerobic processes by heavy metals—A review. Biological Wastes, v. 31, n. 1, p. 45–67, 1990.
OLIVEIRA, A. S.; BOCIO, A.; TREVILATO, T. M.; TAKAYANAGUI, A. M.; DOMINGO, J. L.; SEGURA-MUÑOZ, S. I. Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant. Environmental Science and Pollution Research, v. 14, n. 7, p. 483–489, 2007.
OSUNA, M. B.; IZA, J.; ZANDVOORT, M. H.; LENS, P. N. Essential metal depletion in an anaerobic reactor. Water Science & Technology, v. 48, p. 1–8, 2003.
PATIDAR, S. K.; TARE, V. Soluble microbial products formation and their effect on trace metal availability during anaerobic degradation of sulfate laden organics. Water Science & Technology, v. 58, p. 749–755, 2008.
PERNA, V.; CASTELLÓ ANTONAZ, E. V.; WENZEL, J.; LAZARO, C. Z.; LIMA, D. M. F.; BORZACCONI VIDAL, L. M.; VARESCHE, M. B. A.; ZAIAT, M.; ETCHEBEHERE, C. Hydrogen production in an upflow anaerobic packed bed reactor used to treat cheese whey. International Journal of Hydrogen Energy, v. 38, n. 1, p. 54–62, 2013.
POBEHEIM, H.; MUNK, B.; LINDORFER, H.; GUEBITZ, G. M. Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Research, v. 45, p. 781–787, 2011.
PRADO, R. M.; CAIONE, G.; CAMPOS, C. N. S. Filter Cake and Vinasse as Fertilizers Contributing to Conservation Agriculture. Applied and Environmental Soil Science, v. 2013, p. 1–8, 2013. https://doi.org/10.1155/2013/581984.
QIANG, H.; NIU, Q.; CHI, Y.; LI, Y. Trace metals requirements for continuous thermophilic methane fermentation of high-solid food waste. Chemical Engineering Journal, v. 222, p. 330–336, 2013.
RENEWABLE FUELS ASSOCIATION (RFA) 2018. World Fuel Ethanol Production. Disponível em:
http://www.ethanolrfa.org/resources/industry/statistics/#1454098996479-8715d404-e546. Acesso em: 26 set. 2019.
SCHMIDT, T.; NELLES, M.; SCHOLWIN, F.; PRÖTER, J. Trace element supplementation in the biogas production from wheat stillage - Optimization of metal dosing. Bioresource Technology, v. 168, p. 80–85, 2014.
SOTO, M. A.; BASSO, J. B.; KIANG, C. H. Impacto da fertirrigação da cana-de-açúcar por vinhaça nas propriedades físicas, químicas e hidráulicas do solo. In: FONTANETTI, C. S.; BUENO, O. C. (org.). Cana-de-açúcar e seus impactos: uma visão acadêmica. Bauru: Canal 6, 2017. p. 103-124.
SPEECE, R. E. Anaerobic Biotechnology for Industrial Wastewaters. Nashville: Archae Press, 1996.
TAKASHIMA, N.; SPEECE, R. E. Mineral requirements for methane fermentation. Critical Reviews in Biotechnology, v. 19, p. 465–479, 1990.
TAKASHIMA, M.; SHIMADA, K.; SPEECE, R. E. Minimum requirements for trace metals (iron, nickel, cobalt, and zinc) in thermophilic and mesophilic methane fermentation from glucose. Water Environment Research, v. 83, p. 339–346, 2011.
UEMURA, S. Mineral requirements for mesophilic and thermophilic anaerobic digestion of organic solid waste. International Journal of Environmental Research, v. 4, p. 33–40, 2009.
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY (USEPA). SW-846 Method 6010: Inductively coupled plasma atomic emission spectrometry. Test methods for evaluating solid waste, physical/chemical methods. Washington, D.C.: USEPA, 2007.
ÜSTÜN, G. E. Occurrence and removal of metals in urban wastewater treatment plants. Journal of Hazardous Materials, v. 172, n. 2–3, p. 833–838, 2009.
WILKIE, A. C.; RIEDESEL, K. J.; OWENS, J. M. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenergy, v. 19, p. 63–102, 2000.
WORM, P.; FERMOSO, F. G.; LENS, P. N.; PLUGGE, C. M. Decreased activity of a propionate degrading community in a UASB reactor fed with synthetic medium without molybdenum, tungsten and selenium. Enzyme and Microbial Technology, v. 45, p. 139–145, 2009.
YABUKI, L. N. M.; DA SILVA, C. M. R.; OLIVEIRA, C. A.; MENEGÁRIO, A. A.; GARCIA, M. L. Metals in sugarcane molasses wastewater subjected to thermophilic anaerobic digestion. International Journal of Environmental Studies, p. 1–14, 2019. https://doi.org/10.1080/00207233.2019.1674583
ZANDVOORT, M. H.; VAN HULLEBUSCH, E. D.; GOLUBNIC, S.; GIETELING, J.; LENS, P. N. Induction of cobalt limitation in methanol-fed UASB reactors. Journal of Chemical Technology and Biotechnology, v. 81, n. 9, p. 1486–1495, 2006.
ZHANG, Y.; ZHANG, Z.; SUZUKI, K.; MAEKAWA, T. Uptake and mass balance of trace materials for methane producing bacteria. Biomass Bioenergy, v. 25, p. 427–433, 2003.
ZHANG, C. Fundamentals of Environmental Sampling and Analysis. New Jersey: Wiley & Sons, 2007.
ZHANG, L.; OUYANG, W.; LI, A. Essential role of trace elements in continuous anaerobic digestion of food waste. Procedia Environmental Sciences, v. 16, p. 102–111, 2012.
DOI: http://dx.doi.org/10.18542/ragros.v13i2.8256
ISSN online 2318-0188